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Abstract

The report presents the application of fixed lag smoothing algorithms
to the problem of estimation of the phase and frequency of a sinusoidal
carrier received in the presence of process noise and additive observation
noise. A suboptimal structure consists of a phase-locked loop (PLL)
followed by a post-loop correction to the phase and frequency estimates.
When the PLL is operating under high signal-to-noise ratio, the phase
detector is approximately linear, and the smoother equations then
correspond to the optimal linear equations for an equivalent linear signal
model. The performance of such a smoother can be predicted by linear
filtering theory. However, if the PLL is operating near the threshold
region of the signal-to-noise ratio, the phase detector cannot be assumed
to be linear. Then the actual performance of the smoother can
significantly differ from that predicted by linear theory. In this report
we present both the theoretical and simulated performance of such smoothers

derived on the basis of various models for the phase and frequency processes.
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I. Introduction

The derivation of optimum receivers through modern estimation
techniques has been proposed by various researchers [1-12] (see also their
references). In references [4,5] optimum zero lag receivers have been
derived on the basis of linear Kalman filtering theory [6] for linear
measurement schemes. The nonlinear measurement situations which are of
interest here have been studied in [7], wherein, on the basis of nonlinear
filters of [8], suboptimal nonlinear zero lag receivers have been derived
for the demodulation of angle modulated signals. In [9] the techniques of
[7,8] have been extended to design suboptimum nonlinear fixed lag
smoothers for phase estimation (see also [10-14]). The solution of the
optimum nonlinear filtering and smoothing problem is, of course,
intractable.

Whether derived from linear or nonlinear theory, the smoother
structure consists of a phase-locked loop (PLL) followed by ‘a post-loop
correction to the phase and frequency estimates. In this report we study
the application of linear and nonlinear smoothers to the estimation of
phase and frequency of the sinusoid. We show that for this case, the
suboptimum nonlinear smoother equations derived from [7,8,9] are not
substantially different from the optimum linear smoother equations. In
addition, simulations show that the difference in performance of the
nonlinear and linear smoothers is small.

In this report we evaluate the performance of smoothers both by
analysis and simulations., For high signal-to-noise ratio conditions when
the phase detector can be assumed to be linear, the results predicted from

linear theory are in close conformity with those obtained from simulations.



However, when the phase detector is highly nonlinear, the linear theory is
inadequate to predict performance even for linear smoothers.

The performance of the smoother with a nonlinear phase detector is
evaluated by simulations. When compared to the case of a linear phase
detector the performance of the smoother can be substantially different.
The difference can be much more pronounced when the process noise is
present, compared to the case when only the observation noise is present.
The simulation examples indicate that in the absence of process noise,
although there is a significant performance degradation due to nonlinearity
(about 1 dB when operating in the loop SNR of about 5 dB), there is no
threshold observed in the smoothing error covariance in this region. In
contrast to this, there is a pronounced threshold in the smoother
performance when the process noise is present and the inverse of filter
phase error variance is below 7.5 dB.

We also evaluate the smoother performance when the process noise is
reduced in magnitude. That is, the smoother/filter solutions are based on
a relatively high process noise, but in the simulation the actual variance
of the process noise used is lower or zero., This is of interest because,
in many practical applications, the process noise statistics are not
precisely known, and are therefore deliberately overestimated,

In Section II we present the signal model and the suboptimum smoother
equations as derived from the stochastic optimization theory. With a minor
modification these equations are shown to'be the linear Kalman filter
equations for an appropriate linear signal model apblicable when the phase
detector can be assumed to be linear. This section also presents a simple

finite impulse response (FIR) filter implementation of the smoother. Under



steady-state conditions, the coefficients of the FIR filter are constant
and can be precomputed.

Section III presents three specific subcases of the signal model that
are commonly used in the present application including those involving the
phase and frequency estimation for communication and navigation systems.
In this section, assuming the phase detector to be linear, closed-form
expressions are derived for the filter and smoother transfer functions and
their performance indices.

Section IV contains the simulation results for both linear and
nonlinear phase detectors and compares the simulation results to those
obtained from theory.

Finally, some concluding remarks are made in the last section.
Detailed derivations are contained in Appendices A to C., Appendix D also
contains the flow chart for the computer program developed for the above

simulations and computations.



II. Signal Model and Smoother Equations
We consider the problem of estimating the phase process 6(k) from the

sampled version of the received carrier signal y(k), i.e.,
y(k) = AVY2 Sin (& t, + 6(k)) + v(k) (1)

where t is the kth sampling time, Wq is the known carrier frequency and
;(k) the observation noise is the sampled version of a narrow band zero
mean white Gaussian noise process v(t). Furthermore, the phase process

6(k) is modeled as

6 (k) = Bfx(k) ; €= [10...0]
(2)
x(k+1) = ¢ x(k) + w(k)
In (2),8 is the phase constant, x(k) is the state vector of dimension n,
dis an (n x n) matrix and w(k) is zero mean white Gaussian noise process
independent of {v(k)}. Thus
E[v(k)] =0 y E[w(k)] =0
E[v2(k)] = R ; Elw(k)w! (k)] = Q s E[¥(k) w(i)] = 0

Three possible values of n are considered in the sequel corresponding to
first, second and third order smoothers. The specific selection of the
matrices Q and » is considered later.

Applying the imbedding approach of [14], in reference [9], the
suboptimal nonlinear equations have been derived from the nonlinear filter

equations of [8]. These equations are presented in appendix A.



As shown in appendix A, when 24,t and higher order harmonic terms are

ignored, the smoother equations reduce to the following

xo(k+1) = <I>x0(k/k) + Ko(k+1)n(k+1)

X (ktl/k+1) = X, (k/k) + K, (k+1)n(k+1)
n(k+1) = V2 y(k+1)Cos ( Ak+1))
q(k+1) = Wty + BURKHL/K) (3)
xi(k) é x(k-1i) ; i=0,...L

In (3) x4(k/J) denotes the estimate of x;(k) on the basis of observations

up to time j and the gain vectors Ki and the cross covariance matrices

P;olk/3) £ E{X(k-1/3) %T(k/j)} are given by

Ri(ke1) = A BPo (kel/k) 2 S™1(ke1) ;3 0<i< L (W)

P = » -
10 (H/IFD)=P (b1 /) = B, (ie+1/k) (aB) (ABRY Py (k+1/10S ™ (kt1)  (5a)

Pooktl/k) =P, ) ((k/K) ¢ 5 0<i s L (5b)

2

-1 _2 L 2,1 R(k+1) + p2
8™ (k+1) = A" (Py=% py) { 1 - = ¢ } , - g2 1,1
( > e [R(k+l) + 2p¢] Py = EPgp (6)

where R(k) = R(k)/A° and the smoother error covariance matrix Pii(k+1/k+1)

is

P (kt1/k+l) = P, (k+1/k) - P, o (K+1/k) (ABR) S-l(k+1)(A82)' P;o(k+1/k)

)
P,y (kt1/k) = Py 1,11 (kK ¥

A. Rapprochement with Linear Theory:

Representing the bandpass additive noise v(k) in terms of its baseband

quadrature components vi(k) and v4(k) as,



v(k) = v; (k)Cos(w t, + BL"x(k)) + vo(Osin t, + B2x(k))

and ignoring the 2@0 term, the phase detector output is given by

V2
- Gq(k+1)Sin(B£’§(k+1/k))]

NGk+l) = A Sin(BLX(k+1/K)) + — [Gi<k+1)cOs<Bz’§<k+1/k)>
x(k+1/k) = x(k+1) - X (k+1/k)

For small estimation error x(k+1/k),

n(k+l) = BAL X (k+1/k) + Gi (k+1) (8)

I-

The n(k+1) given by (8) above is precisely the one-step ahead prediction

error (innovation) for the following linear model

y(k+1) = BAL x(k+1) + —1-'i(k+1) (9)

\
It is easily verified that equations (3-7) reduce to the linear

optimal smoother equations for the model (2,9).

B. Smoother Implementation:

Figure 1 illustrates the smoother implementation. If the various
gains are replaced by their respective steady state values, the smoother
consists of a sampled data phase-~locked loop followed by a post-loop
correction to the filtered estimates, There is an equivalent and somewhat

Simpler implementation to that of Figure 1. To derive this, one notes from

figure 1, or the equations (3), that

x(k+1-L/k+1) = 20(k+1—L/k+1-L) + Ky (k+1)n(k+1) + K _; (RIn(k)

+...+K1(k+2-L)n(k+2-L) (10)



Under steady state conditions it is easily seen that

~ -1 d-1 ,
Ki = (BA S PF)Y s PF = lim POO(k/k)
koo

2,2 -1
=] - N = .
Y BA P, S ; P, = lim Pgg(k+l/k) (11)

k-

Substitution of (11) in (10) results in the implementation shown in Figure
2. The finite impulse response filter (FIR) has output€ (k+1) related to

its input n(k+1) by

e(k+1) = n(k+l) + Y I+ T TD fae2-n) (12)
and ¥ in Figure 2 denotes the vector

-1_ L-1
Y= BAS PLY 2



III. Derivation of Steady State Filter/Smoother Transfer Functions and
Performance Expressions
In this section we consider three specific cases of model (2). The
resulting filter/smoother configurations are termed first order, second

order and third order respectively. By replacing various gains and

matrices by their steady-state values in equations (3-7), these difference
equations are replaced by algebraic equations and may be solved explicitly
for the steady state values of the filter error covariance matrix Ppy the
prediction error covariance Pp, smoother error covariance Pg, etc., as in
) {15~-171]. In the following, we consider the measurement model (9)

(justified above) and replace RAL' by H' for notational convenience.

A, First-Order Filter/Smoother:

In this case x is a scalar denoting the unknown phase, $ =1 and the
scalar H may be assumed to be 1 without loss of any generality. The
derivations for PP, PF’ etc., are simple for this case, one may refer to
[16] for example. Substitution of these in equations (3) alsoc yields

transfer functions of the steady state filters and smoothers as in [15].

B. Second-Order Filter/Smoother:
For this case,
1 T
d = , H'=8a [1 0] (13)
0 1
The state vector consists of phase and frequency to be estimated, In [15-
171, expressions for Pp and Pp are derived for a very specific Q matrix,

‘ Here, we also derive such expressions for any general matrix Q. This

derivation is contained in Appendix B. Substitution of these and other



related parameters in (3) yields the various transfer functions associated
with the steady state filters and smoothers. The detailed derivation is
contained in Appendix C. The result for steady state smoother error

covariance matrix is also given in Appendix B.

c. Third-Order Filter/Smoother:

For this case,
1 T T8

= ; H =gA[1 0 0] (14)
0 1 T

0 0 1

The state vector consists of phase, frequency and the frequency
derivative to be estimated. The expressions for steady-state values for
various covariance matrices may be derived as for the case of first order
and second order smoothers/filters, Alternatively, these are also
obtainable from the simulation of the algorithm. Substitution of resulting

steady-state values of Kalman gain Ki in (3) results in the transfer

function of the steady~state filter/smoother as shown in Appendix C.

The above derivations are based on the assumption of a linear phase
detector. The performance predicted on the basis of these expressions
(Appendix B,C) is compared with simulations in the next section. As would
be observed there, under the assumption of a linear phase detector, the
simulation results are in close conformity with those predicted from

theory.



IV. Simulation Results for Linear and Nonlinear Cases

Appendix D contains the flow chart of the simulation package developed
on the VAX system for evaluating the performance of the filters/smoothers
by simulations. The program includes both time domain and frequency domain
analysis. Thus from the steady-state filter covariance matrices obtained
from simulations, the program can also provide coefficients of various
transfer functions associated with filters/smoothers for various delays and
their two-sided noise bandwidths. In the following the simulation results
are presented for the performance of smoothers. First we summarize the
main points of these results in section V. This is then followed by a more
detailed presentation in section VI,
V. Simulation Resul ts-Summary

The simulation results obtained for a second order smoother can be
broadly categorized into linear and nonlinear cases as follows.
A, Linear Cases

The first part of the simulations/computations evaluates the
performance of the filter and smoother with a linear phase detector. Here
we verify the results predicted from theory with those obtained from the
real time covariance matrices and the simulations. The two sets of results
agree within the bounds of statistical errors. Moreover from these
performance plots, simple expressions for the filter/smoother noise
bandwidth are also derived in terms of process noise covariance and the
sampling period. This is done for both the phase and frequency estimation
error variances. We consider three specific cases for the process noise
variances. The first case corresponds to zero process noise, The second

corresponds to nonzero process noise with its covariance known and in the

10



third case we consider the situation where the process noise variance is
overestimated. The results show that the frequency estimation error
variance is a much stronger function of the process noise than is the phase
estimation error variance. Thus the noise bandwidth of the frequency
estimator varies as some power r of noise bandwidth of the phase estimator.
For the simulation examples, % varies between 3 to 6 for the sampling
period T between 0.01s and 1s. We also establish that the asymptotic
smoother improvement over the filter performance is about 5.6 dB for both
the phase and frequency estimation. Another interesting result of
simulations is that for phase estimation alone, a normalized (with respect
to the dominant filter time constant) smoother delay of 1 is adequate to
achieve asymptotic performance for the simulation examples. To improve the
frequency estimates as well, the normalized delay is approximately 2.
B. Nonlinear Cases

The second part of the simulations evaluates the filter and smoother
performance when the phase detector nonlinearity is taken into

consideration. Here we observe that when the actual simulated process

noise variance is zero but the filter/smoother is designed on the basis of
nonzero process noise variance, the smoother still provides an improvement
of about 5.1 dB or more when the loop SNR (linear theory) exceeds 6 dB.
However for this range of loop SNR, the filter itself may result in a
degradation of 1.5 dB or less due to the nonlinearity. Thus overall with
the smoother and for a given value of noise bandwidth (which may be
constrained from other considerations) the receiver may operate with more
than 3.5 dB reduction in the carrier power to noise spectral density ratio,

if the required phase error variance is about 0.1 or smaller. A similar

11




result is shown to be valid when the simulated process noise variance is
nonzero. For the simulation example with loop SNR 2 7.5 dB, similar
improvements are obtained. However, for loop SNR less than 7 dB, the
smoother exhibits a very marked threshold effect in that the smoother

improvement becomes small with the reduction in the loop SNR.

12



VI. Simulation Results-Detailed Presentation
In the following the simulation results obtained for the second-order

case are presented in some detail. To be concrete we use the following
often used model for the Q matrix

/3  1/2

Q = og 3 (15)

T/2 1
One advantage of using the above Q is that the performance of the
filter/smoother is then the function of only three parameters viz, oa
05 and T, where 0;2 = ov2/2 and denotes the noise variance of
;i(k)ﬁﬁr'in the baseband model (9). We present the smoother/filter

performance in terms of both the phase estimation error and frequency

estimation error variances.

A, Phase Tracking Performance

First we present the results from both analysis and simulations for
the case when the phase detector nonlinearity is ignored. Both the optimal
filter and smoother performances are analyzed in the following.

1. Optimal Filter Performance

Here we present the performance of the optimal filter (assuming linear
signal model) so as to relate these parameters to the two-sided normalized
loop noise bandwidth ZBp, (subscript p denotes phase) a commonly used
parameter in the design of phase-locked loops. In the simulations, A and B
have both been normalized to 1. Thus in terms of the closed-loop transfer
function matrix Gp(Z) of (C8) (with ﬁ3 set equal to zero), the parameter

2Bp is given by,

13



1 -1 dz
2Bp = f GF’p(Z)GF,p(Z) n (16)

where GF,p represents the first component of the transfer function matrix

Gp(z), and T is some appropriate contour of integration. Figure 3 plots Bp
as calculated from (16) as a function of (oaz/o;z) for three different
values of the sampling period T viz. 0.01s, 0.18 and 1s. From these graphs

it is readily seen that

2, 2.-11 2, 2
X -— . = -
213p = .67(0‘_:1 /ov ) T ;3 T =ls, (oa /cv ) <10
) o -226
2B = _
Bp 1'01(03 /Ov ) T 3 T =0.1s (7)
2, 2.-25
2B = 1,05(0 “/o=%) T ; T-= .0ls
P a v

Equation (17) shows that the relation between the real two-sided bandwidth
2Bp/T and the parameter (032/052) (not a function of T) is also dependent
upon the sampling period T. The last relation in (7) may be taken to be
the asymptotic relation for (2Bp/T) as T —» 0. Figure 3 also includes
the normalized loop noise bandwidth of the smoother as calculated from (16)
with GF,p replaced by the first component of the transfer function matrix
given by (C14-C16) with i3=0. Denoted by 2Bp,s this normalized bandwidth
is given by,

) 2 2 .234
Bp,S > -28(0a /0; ) T : T = 0.1s (18a)

?

Comparison with the filter bandwidth of (17) yields

o —-008

2 ,
(Bp/Bp’s) = 3.6(oa /o; ) » T =0.1s (18b)

Figure U4 plots the real two-sided noise bandwidth of the filter and

14



smoother denoted by ZBLp and ZBLp,S respectively where BLp = Bp/T and BLp,S
= Bp,S/T' The figure also plots the normalized value of the estimates of
phase error variances both for the filter and smoother. These variances
are the steady-state values of the (1,1) components of the actual filter
error covariance Pp and the smoother error covariance matrix Pg
respectively and have been obtained by simulation, with Oasz set equal to
zero. The term Gassz denotes the variance of the samples of the second
component of the process noise w(k) actually used in simulations. The term
2 4n (15) thus represents an estimate of ¢ 2

a
a’
filter/smoother equations (design) and thus in general ¢ 2 may be different
a

(o] for the purposes of

2
from Ua,s . In case the process noise covariance matrix is known
2 2
precisely, then of course o, =0, g As is evident from Figure 4,

~

f="4 5 2 o~
2BLp = PF(1,1)/(o; T) ; 2B Ps(l,l)/(cng) (19)

Lp,S

where ~ denotes estimate.
In Figure 5 we plot the normalized phase error variance for both the

filter and smoother as obtained from the recursive solutions of equations

(4-6). From the figure approximate expressions for these terms may be

written as,

.08
2
PF(l,l)/(O— T) = .75(o0 2/0-2) T=1s, (o 2/0_2) < 10
v a v ” a''v
1.32 (o 2/0-2) , T =0.1s
a v
2 9 25 (20a)
1.4 (0a /0; ) , T = .0ls

15



) s 9 .237
Ps(l,l)/(o; T) = .365 (Ga /0; ) (20b)

Comparing (20) and (17,18) one observes that provided an optimum

filter or smoother is used corresponding to the process noise variance oa ’

the maximum degradation of the phase error variance (for a specific loop

2

noise bandwidth) due to nonzero process noise variance Oa q S oa

is only about 1.34% (1.25 dB) compared to the case of oaz = 0, and this is

»S
almost independent of the variance Gaz-
Figure 6 provides a direct comparison of the filter performance with
and without o’a,sz. This is in view of the fact that under the assumption
of linear phase detection, and with Oa,Sz= 0, the phase estimation error

variance P(1,1) = (NgBL/P,), where P, is the received carrier power (Pg =
A2 and is equal to 1 for simulations) and NO is the one-~sided power
spectral of the noise v(t) in (1). With 0‘—,2 = ov2/2 = Ny/(2T), we have
PF(1,1)/(0;2T) = 2Pp(1,1)/Ny = 2B, establishing the equivalence of the two
performance measures under the assumption of 0a82= 0. Thus, in figure 6,
the plots of 2B; correspond to PF(1,1)/(0\-,2T) with Oa,32= 0, while those of
PF(1,1)/(0;2T) correspond to oasz= Oaz . A comparison of these two sets of
curves again verifies the statement following equation (20).

In the following performance analysis of the smoother an important
parameter is the optimum filter time constant T, This can be easily
evaluated from the filter transfer function evaluated in Appendix C and is
given by

2T
(21)

F R.n(l-il)

16



where §1 denotes the first component of the normalized Kalman gain BAKpe

Figure 7 plots the normalized time constant (TF/T) as a function of

o} 2/cr_z. For T = 0O.1s, (TF/T) varies between 2.5 and 14 as (O 2/0—2)
a v a v
varies over a large range. As is intuitively clear, higher values of S,

result in faster settling of the filter and this as shown later requires a

smaller number of smoother delays to achieve the maximum possible smoother

improvement. A comparison with figure 3 shows that (TF/T) is of the order

1/(2B),

2e Optimal Smoother Performance with Linear Phase Detector

In Figure 8 is plotted the smoother performance evaluated from
simulations as a function of the smoother delay and the ratio(Oaz/égz)
used in the smoother design, assuming a linear phase detector. The dotted
curves in the figure plot the two-sided normalized loop noise bandwidth as
computed from (16). As may be inferred from the figure, the two measures
of performance are equal within the limits of statistical errors resulting
due to finite data size. The minimum phase error variance (corresponding
to L = ) varies over a range of about 0.3 to 1.4 for (cra2 b‘—lz) between 1
to 100. It is also apparent from the figure that the amount of delay
required to achieve asymptotic smoother performance has an inverse relation
to (Oa%/O;%. In Figure 9 is plotted the real loop noise bandwidth ZBLp,S

as a function of normalized smoother delay (LT/TF), where Tp is the time

constant of the optimal filter. As is clear from the figure, the
normalized value of delay required to achieve asymptotic smoother
performance does not depend significantly upon (0a2/0;2).

Figures 10 and 11 plot the results similar to those of figures 8 and 9

respectively, when the actual process noise variance equals its design

17



2 2
value, i.e., Oa g = Oa . A comparison of these two sets of figures shows

that the phase error variance can be at most 1.35 times more than for the

2
case of Oa g = 0. For intermediate values of the noise variance,
2
a,sS
In figure 12, a comparison of smoother phase error variance is made

2
0<o < O, the ratio would be smaller.

for three different sampling periods T equal to .01, 0.1 and 1s
respectively. As is evident from the figure, whereas the optimum filter
performance is dependent upon the sampling period, the asymptotic smoother
performance depends only marginally on T, Moreover as the normalized
smoother delay (to achieve asymptotic performance) is almost independent of
T, the actual delay L has an inverse relation to T (from Figure 7 (TF/T) is

inversely related to T.)

3. Smoother Performance with Nonlinear Phase Detector

Figures 13-17 plot the performance of the smoother when the sinusoidal
nonlinearity of the phase detector is included in the simulations. For
these simulations, we consider a specific case wherein the design value of
the process noise variance is equal to the measurement noise variance
0‘—,2 (corresponding to a two-sided bandwidth of 1 Hz). From figure 13 it is

observed that when the simulated noise variance 082

g = 0, the effect of

nonlinearity is to degrade the normalized phase error variance Pg(1,1)/
0\-,2 by at most a factor of 1.32 for o‘—72 £ 2.2 (corresponding to the
filter rms phase error of 27° for a linear detector and 30° for a nonlinear
phase detector).
In figure 14 is plotted the smoother performance with a nonlinear
2 2

phase detector for the case of oa g ga . Here the variation of

18



normalized phase estimation error variance depends much more strongly on
o;z. For G;z < 1.4 (corresponding to a rms phase error of 28.5° at the
phase detector output), the degradation is within a factor of 1.7 (2.3 dB).
The degradation can be much higher for larger values of 0;2. Figure 15
plots the phase error variance normalized by the sampling period T vs the
normalized smoother delay. Such a normalized result is expected to be
approximately valid for different values of T.

Figures 16 and 17 compare the filter and the limiting smoother
performance as a function of optimal filter performance with a linear phase
detector. Thus the inverse of the phase error variance of the filter with

nonlinearity vs 10 log (P, /NyB; ) = 10 log (1/o 2) is plotted in figure 16

¢

for the case of Oa = 0. Here, o¢2 denotes the phase error variance of a

sS
phase~locked loop with a linear phase detector and having a loop noise
bandwidth of B; Hz and (P,/Nj) is the receiver carrier power to noise

spectral density ratio. Figure 16 also plots the corresponding results for
the smoother with and without nonlinearity. As may be inferred from the

figure, for the case of a linear phase detector, the smoother provides an
improvement of 5.6 dB over the filter. When the phase detector
nonlinearity is taken into consideration, then for a range of 10 log
(1/o¢2).2 6 dB, the smoother still provides an improvement of at least 5.1
dB over the filter. Note, however, that the filter performance can itself
be degraded by as much as 1.5 dB due to phase detector nonlinearity. Since
the plots in figure 16 correspond to a fixed value of BL, these results
indicate that with a smoother, the receiver can be operated with at least
3.5 dB smaller (P,/Ny) ratio when it is desired to have a 0.1 or smaller

value for the phase error variance,
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2 2

Figure 17 plots the corresponding results for the case of‘oa,s =0,
Here it is observed that the effects of nonlinearity are more dominant
resulting in a threshold behavior in the smoother phase error variance.

However, for 10 log (Pc/NOBL) 2 7.5 dB, the results in terms of smoother

2
performance are close to those for the case of Oa g = 0.

s

B. Frequency Tracking Performance
In the following we present the performance of the filter and smoother

in terms of the frequency estimation error.

1. Optimal Filter Performance

The frequency estimation error variance is presented in terms of the
frequency tracking loop's normalized two-sided loop-noise bandwidth denoted
by 2 B This parameter can also be computed from (16) with GF,p replaced
by GF,f - the second component of the transfer function matrix GF(zL The
actual two-sided loop bandwidth ZBLf equals (ZBf/T) or is equivalently
given by PF(Z,ZLKOGZ T)e This parameter is plotted vs the design
parameter (oaz/b;z) for the case of Oa?S = 0 in figure 18, From these
graphics it is readily seen that approximately,

.64
2B

IR

2 2
Lf 0.32 (oa /0; )

3
"

1s , (oazlogz) < 10
.75 (22)

2 2
2B = (), - .
35 (Oa /o=7) ; T 0.1s

Lf

A comparison of (22) with (19,20) shows that approximately

5.8 2 2
ZBLf = 10 (ZBLP) » T =1s, (Ga /0; ) =10
3.32
2B = =
3
3 -
ZBLf = .30 (ZBLp) » T = .0ls
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It is hardly surprising that for low values of T, the frequency estimation
error variance is proportional to the third power of 2Bp. Still more
important is the fact that the frequency estimation error degrades at a

much faster rate with BLp as T is increased.

2. Optimal Smoother Performance with Linear Phase Detector

In figure 18 is also plotted the equivalent loop noise bandwidth of
the smoother ZBLf,S = PS(2,2)/(0;2T) for the case of T = 0.18. This result
can be approximated by the following expression.

0.72

2, 2 :
ZBLf,S = .097 (Oa /O; ) (24)

A comparison with (22) shows that the ratio of BLf to BLf,S is given by
3.6(032/0\-,2)0'03 which for low values of (032/062) is approximately 5.6 dB.

Figures 19 and 20 plot the normalized frequency estimation error
variance for the smoother as a function of smoother delay corresponding to
oa?S = 0 and Ga?S = Oaz’ respectively. Comparison with figures 9 and
11 respectively shows that the smoother delay required to achieve the
asymptotic improvement in frequency estimation is about two times that
required for phase estimation alone. Even so, a normalized delay of less
than two is adequate for realizing the asymptotic improvement. Also, as

already discussed, the frequency estimation error variance is a much

2 2
stronger function of (0a /0; ) and the actual process noise variance o 2
a

4

3. Smoother Performance with Nonlinear Phase Detector

In figure 21 is plotted the normalized frequency estimation error

21



2
variance for the case of Oa = o;z and the actual process noise variance

2

2
ca,s = 0. For 0; £ 2.2, the filter and smoother performances are degraded

by a factor of 1.18 and 1.24 respectively. Figure 22 plots the smoother

performance for the case of oaz =0 2.

»S a

c. Smoother Parameters

Figures 23 and 24 plot both components of the asymptotic smoother gain
Ki(k) as k - o (see equation (4)) for various values of the delay variable
i, corresponding to two different values of the design parameter (082/0;2).

As is apparent from the figures, the smoother gain is negligibly small for

i > 20 in both of these cases.
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VII, Conclusions and Suggestions for Further Work

The report has presented the performance of the suboptimal filter and
smoother for the phase and frequency estimation of a sinusoid under the
presence of both the process noise and observation noise. The performance
predicted on the basis of linear estimation theory is in close proximity
with the corresponding results obtained with simulations, when the phase
detector is assumed linear. Such simulation results are applicable when
the phase detector nonlinearity is taken into consideration and the
receiver is operating under high signal-to-noise ratio conditions. Under
such conditions, the smoother improves both the phase and frequency
estimation errors as compared to the filter by about 5.6 dB.

However, as the signal-to-noise ratio is reduced, the corresponding
improvement is also reduced. Alsq such a difference is more severe when
the process noise is present than when only the observation noise is
present. In the presence of both the nonlinearity and the process noise,
the smoother performance exhibits a marked threshold behavior, in that the
smoother performance degrades rapidly with decrease in 10 log (1/0¢2) below
7.5 dB., However, for 10 log (Pc/NOBL) 2 7.5 dB, the results in terms of

2
smoother performance are close to those for the case of Oa g = 0.

’

From the simulation examples it also appears that the performance of
the filter/smoother does not change very significantly if the actual
process noise variance is smaller than its design value.

Although not studied in this report, it is expected that the
degradation caused by ignoring the process noise variance completely or by
underestimating it in the design would be relatively much more severe.

Thus in situations where the process noise variance is not known, an upper

23



bound for it should be used in the design. This however, can lead to much
higher estimation error than the minimum possible value as it follows from
the simulations (the actual phase error variance would be close to the
value obtained when the actual process noise variance is equal to its
bound).

Therefore, for the future research we propose an adaptive
implementation which either explicitly or implicitly estimates the actual

process noise variance.
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Appendix A: Smoother Equations

In the following, the filter and smoother equations are presented
which result by expanding the nonlinear measurement function h(x,k) into a
Taylor series around the predicted estimate of x(k) and retaining only the
linear and quadratic terms. Much of the simplicity in the resulting
equations is due to the fact that 2w,t and higher order harmonic terms are
ignored. These harmonic terms result from the quadratic terms present in
the filter/smoother equations.

Denoting by h(x,k) the function A Sin(w,t, + B2 x(k)) and by hy (x,k)
its partial derivative with respect to x, the smoother equations can be
decomposed into two sets of equations termed filter equations and
"smoother™ equations as follows. Letting x (k) é x(k=-1i), ii(k/j) denote
the estimate of xi(k) on the basis of observations up to time j, one
obtains [7-9]:

Filter State Equations:
Xo(k+1/k+1) = 3xg(k/k) + My(k+1)v(k+1) (a1)
V(k+1) = y(k+1) = h(x(k+1/k), k+1) (a2)
where My(k+1) is the filter gain.
Smoother State Equations:
X3 (ke 1/k+1) = x4 q(k/k) + M;(ke1)V(k+1), 0 < 1 S L (43)
where L denotes the smoother delay.
Filter/Smoother Gain:
M;(ke1) = Pyo(ke1/k) o~ T(ke1), 0 <1 <L (A4)
Error Covariance Update:
In (A4) P;y (k/J) denotes E [{x(k-i) - X(k-1/3)} {x(k) - i(k/J)T}]

with j = k=1. A recursive update for Pio (k/k) is given as
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Pyg(ke1/ke1) = Byo(kel/k) = [Pyo(ke1/kInglo™ (ket) [By,(ke1/kIRGIT  (a5)

Pyo(ke1/k) = Py_y o(k/K)6T , 0 < 1L (46)

n

. . 1
o(k) = hPoo(k/k-1)h) + R(K) + 5 Z 3
s=

1sJ=l r,s=1

. (A7)
1,1 8,3 5%h 3%h
00 00 XL 0X°  ox:oxJ

P

In equation (AT) xl denotes the ith component of x andPsg denotes (i, j)th
component of the matrix Py,. The smoothing error covariance matrix Pyy

(k/k) = E {i(k-i/k)iT(k-i/k)} , X(k-1/k) = x(k-1) - x(k-1i/k), is given by

-

- - -1 .
Pii(k+1/k+1) = Pii(k+1/k) - Pio(k+1/k)hx o} (k+1)hx Pio(k+1/k)’0 <i <L

i (A8)
P, (ktl/k) = Piq,i1(/k), 1c<icl

To specialize the algorithm to the signal model (1,2), hx and hxx are

evaluated as,

2
h = A/Z 2Cos (B()); ——8 = AYZ 22510 (B(K));
X 90X
0 (k) a w £+ BL ®(k/k-1) (49)
2 2 ~ 2 2 2 —1 -
(k) = 2Py A Cos™(0(k)) + R(k) + P, A" sin”(0(K)) » Py = F Poot
(A10)
- Péal(k/k—l)
The above expression for Ozﬁ)may easily be reorganized as
-1 -2 ~ - ~ -
o L(k)=A [p¢ + %pi + R(k)] 1 [1 + d(k)Cos (2 @(k))] 1
(A11)
P, ~ Lp2
1 N
d) & 0“0 s R(k) = R(k) /A
Py + %¢ + R(k)
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Expansion of the second term on the right hand side into a cosine Fourier

series results in
o lag = a2 [% ¢ + R(k)] {ag + a 1Co8 (20(k))+.. ) (A12)

where ags aq etc., are the Fourlier series coefficients. Thus

m

1 f dx 1
a, = — _
0 T . 1+d (k) Cosx V 1-a2(x)

(413)
a=_f _Cosxdx _ _ 2 {1_1 }
1 14d (k) Cosx ax) v 1-4% (1)
Substitution of 0=1(k) from (A12,A413) into (Al) results in
M, (k+1) = P, (k+1/K)AVZ ¢ [p + p2 + 'i(k+1):|‘1
1 i0 ¢ ¢
_2 ~ ~
& cycos @) + ¢,00s (38(K))+... |
with . a1 . 1-d (k) ” (A14)
1 0 2 d(k) 1+d (k)

Recognizing that Pio(k+1/k) is baseband, the baseband part of the

correction term in (42,A3) may be written as

My (k+1)V(k+1) = Kq (k1N (k1)

Ky(ke1) = A Pyg(ke1/k) Cy [A2p¢ + A2p¢2 + RG]

N(k+1) = Y2 y(k+1)Cos(E(k+1)) (A15)
In (A15) Ky(k+1) is baseband, and the term M,;(k+1) 5in(8(k+1)) has been
ignored as this does not contribute any baseband component.
Similarly, the second term on the right hand side of (A8) is given by
P - 2 ~ -
10 (KFL/LL7P.  (k+1/k) A [1 + Cos(2@(k+1))][A2p¢ + % A2p¢2 . R(k+1)]

{ao + a Cos(26(k+1)) +... }
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and its baseband part is simply

-1
Pio(k+1/k) (ABR) (Asz)'pio(kﬂ/k) [A2p¢ + 4 A2 p;; + R(k+1)] (ao + a;/2) (Al6)
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Appendix B: Steady State Performance Equations for a Second Order Linear
Filter/Smoother

— 1 -
Denoting by R, the variance of the additive noise termé;::vi(k+l) in
2

equation (8), the steady-state error covariance matrix Pp is the solution

of the following algebraic Riccati equation.
P = ®[P - P H(H'P H + ﬁ)_lli’P ] 7+ Q (B1)
P p p % p
or

- - _1 - —1 —1
P - P H(H'P H = - -
p P ( > + R) 'H Pp o (Pp QW) (B2)

Denoting by Pij the ij th component of PP, the left hand side of (B2)

denoted B equals,

(P,. + R) PR - p? = B
11 12 (B11Pyg = P1p) + Py R (3)

Letting A denote the matrix on the right hand side of (B2), one obtains

2 -
A, = (P,, - 2TP._ + T - . -
11~ P 121 TP -0y Q) = Q - 210, + 17,
A= (P, - N T
127 P = TPy = Q, 5§y, =@, - 1q,,
A, =P, -Q

Substitution of (B3) and (B4) results in the following set of equations in

P10 Py2 and Ppa.
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2 - (B5)

P.. R = R - -
11 Fpp + 0 { Pip ~ 2P+ T Py Q11}
P - -— - —-
12 R= @ + R 1P, - TPy, le} (B6)
(P,, P, - p? ) +P,. R=(P,, +R) (P.. - Q
11 P22 =~ P12 22 11 22 = Q)
(BT)
Equation (B7) can also be written as
- 2 -
- - B8
Qo F1p “Fp P RQy =0 (88)
P+ R =P /0 : -
or 11 = P12/, (878)

Substitution of (P11 + R) from (B”8) into (B6) and a little simplification

yields

_ _Q
P..-TP = + R —22 (B9)

Substitution of (B9) and (B“8) in equation (B5) results in the following

algebraic equation in Pqo.

4 2

F12 - ' p3 -{2§+T' +Q }PIZ-TI_{P +§2—

32 3 12 Qo * Qg = 12 =0 (B10)
22 22 Q9

~ A - o - - -
Defining P, = Plzl"sz R , then substitution of Qq¢s Qps Qg2 in
terms of Q11 ete. from (Bl4) results in the following equation for 332,
~4 ~3 2 ~

P12 - a P12 - (2 + 1) P12 - a P12 +1=0

- Q,, - TQ
a=T,/Q22/R ; b=-—11—'§——12—

(B11)
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In terms of the solution’FAZ of (B11), the clements of the matrix Pp

can be computed as follows.

Plo = V&2 B P12

12
p = R 3% -1 (B12)
11 12
,Q = (o 1 } ( Q)
22 R j12
P 2= N evhemsa— {P - o + Q2_
22 T 12 B, 2 T

Due to symmetry in the coefficients of the polynomial in equation

(B11), it can be factorized as

~

- - ) +
(Bl = C Pyt D) (B, ~Cp B+ 1)

comparing the coefficients yields the solution for C1 and 02 as follows,

C1,2=1"’[ai \p+4 (4+b)] (B13)

Thus for the existence of the solution, one must satisfy the condition

2
a“ +4 (4L+Db)>0 (B14)

Now 512 is the solution of

~2 ~
P}, - CP,+1=0 (B15)

Since it is required that |P12| > 1 (note that the solutions of (B15) are

A and A~1 for some real A)

P12 %[C+\/cz—4 ]; c >0
%[C-\ch—l;]; cC<O0

For the above solution to exist 02 > 4, If only one solution of (B13)

(B16)

]

satisfies this condiition then the solution is uniquely determined. This
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would be the case, for example, when

|4 + b| < 4 or -8<b<0 (B17)

If on the other hand both solutions of (B13) satisfy c2> 4, then the one
satisfying P,5 > Qo (PFZZ + Qoo = PPZZ) where superscripts F and P stand
for filter and predictor respectively is the desired solution.

With the knowledge of Pp, the steady-state filter error covariance

matrix PF is simply given as

Po=P ~PH((MPH+R A"
F p p( p R)Ille

The smoother covariance matrix PiO and the filter smoother gains Ki can
then be obtained from equations (C10-C13) of the Appendix C, which are time
invariant versions of the relevant smoother equations. Moreover, the
smoother performance for various values of the delay can be evaluated
recursively from equation (7). Equivalently the asymptotic performance of

the smoother can be evaluated from the following nonrecursive equation.

~ -1 -1~
(P -P - P ¢°P - = -
> S) o VP, (Pp PS) Pp ¢ Pp Pp PF (B18)
where -
¢ =¢-KH" ; P, =1im 1lim P, _(k/k)
0 S L= k= LL
. -1 Y
Letting, P,¥P, = [ °
B )
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then the solution for Pg 4 (Pp - Pg) is given in terms of

P

-

=

A
= (Pp - PF) as follows,

Pg(1,1)

Py(1,2)

PS(2,2)

§

(1-a%)

_QB

20y

1-(as+BY)

=284
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-y
-Yd

1-6

P_(2,2)

PF(I,I)

PF(1,2)

F

J

(B19)



Appendix C: Transfer functions of the steady-state filter/smoother.
Ihird-Order Filter:
From equations (2), (3), (8) and under the assumption of a linear

phase detector, one obtains

x(k+1/k+1) = ¢ x(k/k) + xOAez'<P{ x(k) - x(k/k)} + KOAez’w(k)
(c1)

+
Kovi(k+1)
A1 -
In equation (C1), Vi(k+1) ‘\f==-Vi(k+1) y and {w(k} is a vector white
2
Gaussian noise process as appearing in equation (2). Subtraction of (C1)
from the second of equations (2) yields the following equation after some

simplification and taking the Z transform on both sides of the equation.
f1 - (1 - K29 )X (2) = [1 - ReJw(2) - 2V, (2) (c2)

In equation (C2) above, Ré BAK0= [§1 fz EB]' and iF(z),W(z) and v;(z)
represent the Z transforms of x(k/k), w(k) and v (k) respectively. Letting
the vector function 7 (z) represent the right hand side of (C2), the
equation (C2) may be written as a set of following three equations in the

unknowns §1(z), iz(z) and 23(2) (after substitution of ¢ from (14)).

2
)] % T XF = T° =F _
L= - (1"1(1):| X - AKPT X, - (I'Kl)—z' Xy = g, (2) (c3,1)
K, X] +[z- a-k,D] X, - T(1-K,1/2) X, = z,(2) (c3,2)
RyX +RT T+ [= - (1-R,1/2)] K] = £y(2) o

The set of equations (C3) can be solved to obtain the following transfer

~F’ .
function matrix between V;(z) and X (z) (setting W(z)=0) ,
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[= (82, = = 2 = 2]
Aéip(z) _ " K, (z-1)" + (R,T + 3 K,T7) (2-1) + K,T
2V, (2) D(z) (z-1) [R,(z-1) + R,T] (ch)
2 -
i (z-1) K3 J

2

3 - - - T 2 - 3 - 2
D(2) = (2-1)” + (R + K,T + Ky ) (-1 + ®,T + - K1) (2-1) (cs)
+ E3T2
From (14) and (C5) it follows that
ABL” 3 X (2)
2V, (2) (c6)
= 1 R+, T4K 2)(-1)+(1<'r+i1<r)(z1)+ K'rz}
- {(1 3 32 /%% 2 3

D(z)
From equation (8), in the absence of process noise w(k), the transfer

function between N(k+1) and v, (k+1), (or between n(k+1) and y(k+1)) is

given by
@ e ¥
Vi(z) zVi(z)

(z-1)3/D(2) (en

By exploiting the linear property of the filter (or smoother) and
considering the case when w(k) = 0 (x(k) = 0, implying that x(k/k) =
-i(k/k)), one readily observes that the filter transfer function between

y(k) and x(k/k) (or between v, (k) and x(k/k)) is given by

[ - 2 _ -
ase (2 & s X2 | s K (D7 + Ry RyT%) (2-1) + E3T2
F Y(Z) - D(Z) (CS)

(z-1) [Ez(z-l) + E3T]

(z-l)2
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The first term of the transfer function matrix on the right hand side of
(C8) is simply A times the transfer function between the phase estimate and
the input signal y(k). Similarly the second term represents A times the
transfer function between the frequency estimate and the input and so on.
Using frequency domain techniques, these transfer functions are used in the

developed software to evaluate the filter loop noise bandwidth.,

Iransfer Function of Third-Order Smoother:
It is easily seen from equation (3) that the smoothed estimate (with

smoother lag equal to L) of x(k+1-L) may be written as,

R(k+1-L/k+1) = X(kHl-L/k+1-1) + K (k+1)n(k+l) + K (K)n(k)
(C9)
+...+ Ky (k+2-L)n(k+2-L)
The various smoother gains and the covariance matrices are now replaced by

their respective steady-state values as follows. From equations (4) and

(5) one obtains

Pio(kH1/l) = Py ) o (k/k=1) 07 (k) (€10)
where
S(k) = (k) - ABE(K, (k) ” (c11)

A nonrecursive solution of (C10) under steady state can be obtained by
replacing E(k) and Pyo(k/k-1) by their steady-state values denoted by % and

Pp respectively. Thus,
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. N L
klimw p;o(k¥L/k) = pp[<1>J ;3 1<i<L (c12)

lim K.(k_-'.l) = ARP ~TA1i ﬂ—l
TS B p[d’] L3

(C13)

Denoting by xS the Z transform of the smoother estimation error X(k+1-

L/k+1), then the substitution of (C13) and taking the Z transform of the

resulting error equation yield,

=S ~S ~F oL
ap K@ e X e K@) @D | (Ae)zs'le[c’] n(z)

Vi(z) Vi(z) Vi(z) Vi(z) (Cl4)

X {I + @971 4 4@ D - @-Dy e

Substitution of (C6) and (C7) into (C1l4) yields is(z)/vi(z) or
-is(z)/vi(z) (taking x(k) = 0). Equation (C14) in its present form is more
convenient for computer evaluation of the transfer functions and has been
used for such purposes in the program SIM. However by summing up the terms
in the finite series in (C14), the second term on the right hand side of

(C14) may be written as,
AB z'(L‘”(z-1)3s'1pp$'(1-$'z)"1 {1 -BT‘zL}z/D(z) (c15)

In particular, the transfer function between the smoothed phase estimate
85(k) and v4(k) (or y(k)) obtained by premultiplying (C14) by &° is given

by

55(2) =Lz—(L—l){

- 2 - - 2 - 2
K.(z-1)" + (K.,T+5 K.T -
v, () N 1 (R, THs KyT7) (2-1) + K,T

3

- - 1 c16
+ (z-1)32 13121 (1-82) 15K0}/D(z) (e1)

Transfer functions to the smoothed estimates of the frequency and frequency
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rate can be similarly obtained.

First and Second Order Filter/Smoothers:
The results derived for the third order filter/smoother can be
directly specialized to obtain the corresponding results for lower order

estimators. For example, substitution of E3 = 0 in equations (C4), (C5)

and considering only the first two components of iF result in

ABiF(z) ) -1 Klz + (TKZ—KI)

zVi(z) E(2)

R, (z-1) (C17)

— 2 v v -
E(z) = 2= - (2—K1—K2T)z + (l—Kl)

Similarly substitution of EZ = 0 (and E1 = K) in (C17) and considering
only the first component of X result in the transfer function of the first

order filter. This after cancellation of the common (z-1) term may be

written as,

zVi(z) z- (1-K) (c18)

A

In the same manner the transfer functions n(z)/V(z) can be obtained
from (C7) by substitution of f3 =0 or K, = K3 = 0 respectively for the
second order and first order filter respectively. Furthermore, as (C14) is
applicable to the smoother of any order, a minor modification of (C15),

(C16) also yields the smoother transfer functions for lower order

estimators.
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Appendix D: Flow Chart of Simulation Program for Smoothers
The flow chart of the computer simulation program SIM developed on the
VAX system is given in Figure 25. The program contains both the time

domain and frequency domain analysis of the smoothers.
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Figure 1. Smoother Implementation
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Figure 2. An Equivalent and Simpler Implementation of the Smoother
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Figure 25. Flow Chart of Simulation Program for Smoothers
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Figure 25. Flow Chart of Simulation Program for Smoothers (Contd)
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